Core Architecture – The Evolutionary Loop

At the heart of Synthetic Darwin is a recursive loop:
Generation n
┌───────────────────────────────┐
│ Population Pₙ (|P| = N) │
└──────────────┬────────────────┘
│ evaluate fitness ƒ(x)
▼
rank / roulette / tournament-selection → Parents
│
┌────────┴─────────┐
│ crossover χ │ (single-, two-, or uniform-point)
│ mutation μ │ (param tweak, prompt splice, code diff)
└────────┬─────────┘
▼
Offspring Ōₙ
│ elitism ε% of Pₙ
▼
Pₙ₊₁ ← ε · best(Pₙ) ∪ (N-ε) · Ōₙ
│
stop if Δfitness < τ or n ≥ n_max
Each generation aims to create better successors.
Last updated